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PART A

SCATTERING FROM COATED STRUCTURES

ABSTRACT

Part A of this report examines the scattering from coated,

conducting structures, specifically the coated dihedral corner

reflector configuration and the coated strip/plate configuration. The

formulation uses impedance-wedge Uniform Theory of Diffraction

scattering coefficients to calculate the diffracted fields. A

finite-thickness coating is approximated using the impedance boundary

condition to arrive at an equivalent impedance for the coating. The

formulation of the impedance wedge coefficients is outlined.

Far-field, perfectly conducting approximations are discussed.

Problems with the present dihedral corner reflector model for certain

angles of incidence and observation are discussed along with a

potentially rectifying modification. Because the interactions

involved in analyzing the scattering from a dihedral corner reflector

are quite complicated, the strip/plate model is developed as a simpler

configuration for analyzing the diffraction coefficient modifications

and for isolating problem areas. Comparisons with data obtained

experimentally and using the Finite-Difference Time-Domain method are

included for the plate geometry.



I. INTRODUCTION

Now that high-frequency techniques for perfectly conducting

geometries, such as the UTD [I], [2] and various equivalent currents

methods [3]-[10], have reached a mature stage of development, the

emphasis in the research on high-frequency techniques has shifted to

dielectric and dielectric-covered materials. Dielectric materials are

useful in radar cross section (RCS) reduction, thus accurate

prediction techniques are necessary for modeling procedures. Just as

in the perfectly conducting case, the wedge geometry is the canonical

structure used to determine scattering coefficients. Maliuzhinets

presented an exact solution to the scattering by an impedance wedge at

normal incidence in 1958 [Ii]; however, the difficult mathematical

nature of the representation precluded easy analytical use of the

solution.

Recent work has concentrated on asymptotic approximations to

Maliuzhinets' exact solution in order to obtain computationally

tractable methods for predicting impedance-wedge scattering. Initial

solutions were for limited cases, such as the half-plane and 90-degree

wedge. In 1967, Bowman [12] used a steepest-descent approximation to

Maliuzhinets' wedge solution for the special case of a half-plane

configuration to determine the scattering from an infinite impedance

strip. This solution was limited to normal-incidence backscattering

and was non-uniform [13]. In other words, this solution was analogous

to using Keller's GTD diffraction coefficients [I] for the perfectly

conducting wedge.



More recent work by Tiberio, Pelosi, and Manara [13] has extended

to a uniform solution for first-order scattering from an infinite

strip at grazing incidence, analogous to the use of the UTD

diffraction coefficients [2] for the perfectly conducting wedge. This

work also considered higher-order scattering due to edge interactions

by using an extended spectral method, analogous to previous work in

the perfectly conducting realm [14]-[16]. In an extension of this

work, Tiberio and Pelosi later considered the scattering from

impedance discontinuities in a flat, infinite plane [17].

In a parallel attempt to formulate high-frequency approximations

to impedance wedge scattering, Volakis derived uniform diffraction

coefficients for scattering at normal and oblique incidence from an

impedance half-plane using a Wiener-Hopf solution to impedance

half-plane scattering [18]. The resulting coefficients were similar

to the UTD coefficients for perfectly conducting geometries and were

just as computationally efficient because the integrals involved in

the solution were numerically approximated. In later work, Senior and

Volakis presented similar solutions for a 90-degree imperfectly

conducting wedge with one impedance face and one perfectly conducting

face [19] and for a dielectric half-plane of a given thickness [20].

Herman and Volakis also derived coefficients for up to third-order

diffractions from resistive, conductive, and impedance strips for all

angles of incidence and observation [21]. Volakis generalized this

work in his solution for scattering from finite-thickness impedance

half-planes and strips [22] which involved a dual-integral equation

solution and the extended spectral ray method.



Most of the recent accomplishments in the area of impedance wedge

scattering theory have been limited to special cases. In 1985,

however, Tiberio, Pelosi, and Manara presented a general

high-frequency formulation for Maliuzhinets' impedance wedge solution

in the form of a diffraction coefficient that was analogous to the

perfectly conducting UTD diffraction coefficient [23]. This solution

contained the computationally inefficient Maliuzhinets function that

prevented obtaining numerical results for all but the 180-, 270-, and

360-degree impedance wedges. The UTD formulation, however, was very

promising if an accurate, generalized method for computing the

Maliuzhinets function could be formulated.

Recently, Griesser and Balanis reported a new, computationally

efficient, representation for the geometrical optics and diffraction

terms for impedance-wedge scattering [24] based upon the UTD

formulation of Tiberio, Pelosi, and Manara [23]. Using a series of

identities, the geometrical optics term is represented in terms of

reflection coefficients as opposed to Maliuzhinets functions, greatly

simplifying numerical computations. Additionally, the efficiency of

the UTD diffraction coefficient is improved by representing a double

integral in the complex plane in terms of the product of eight single

integrals in the real plane, which can be easily and quickly evaluated

with standard numerical integration routines. The results for

impedance wedges are highly accurate, as Griesser and Balanis reported

[24]; and the solution allows easy and fast computation of the

scattered fields for any size impedance wedge, not just certain cases

as in the past. The relative computational ease with which the

diffraction coefficients for any size impedance wedge can be



calculated allows the high-frequency modeling of more complicated

geometries such as the impedancedihedral corner reflector, which has

been analyzed in a previous report [25] and in [26].

A more interesting target configuration than one composedof a

homogeneous material is a coated conductor target, which could

realistically be found in low-observable vehicle designs. The main

problem in modeling a coated-conductor target is in representing the

effects of a finite-thickness coating. Research in this area is in

the incipient stages. Newmanand Schrote use an approximate boundary

condition at normal incidence, which is essentially a transmission

line equivalent impedance, in their MomentMethod (MM)solution [27].

Jin and Liepa also use this approximation in their numerical method

for computing the scattering from coated wedges illuminated by a TM

plane wave [28]. Although Senior is investigating solutions for

coated geometries involving higher-order boundary conditions [29], the

approximate first-order boundary condition is much simpler to apply

and to use computationally; thus this is the boundary condition

analyzed in this report.

In their initial investigation of coated dihedral corner

reflectors [25] and [26], Griesser and Balanis use the approximate

boundary condition at normal incidence. This speeds up the

computation time by eliminating the calculation of a new equivalent

impedance at each incidence angle. For the higher-order terms

included in the dihedral corner reflector model, this would be a

complicated task. In the last report [30], however, it was stated

that using the normal incidence transmission line impedance model for

a finite-coating thickness is insufficient except for highly



conductive coatings or near and at normal incidence to either one of

the plates composing the corner reflector. This report details the

latest investigations concerning the improvement of the present model

for the coated dihedral corner reflector. After a brief discussion of

the UTD impedance wedge diffraction coefficient and the corner

reflector model, a formulation for the coated strip/plate model is

presented along with numerical results. The strip/plate model is a

much simpler target to analyze in terms of isolating and identifying

key factors in finite-thickness coating modeling; thus it is an

important point at which to begin in improving the present dihedral

corner reflector model.

II. THEORY AND RESULTS

A. IMPEDANCE-WEDGE DIFFRACTION COEFFICIENT

The fields diffracted from an impedance wedge at a distance p

from the wedge configuration of Fig. 1 can be represented as:

d E iE (p) = (Q) D(_,_,8o, Sn,kP ) e -jkp / _-p (I)

whe re

i
E (Q) = incident field at the point of diffraction due to

plane-wave incidence

D(_,_',8o, Sn, kP) = impedance-wedge diffraction coefficient

@ = diffraction angle

_' = incidence angle

8 o = Brewster angle for the "o" face

8 n = Brewster angle for the "n" face

p = distance from the diffraction point to the observation

point



Plane-wave

face o

face n

ncidence

P

Fig. I. Impedance wedge geometry.



Far-field observation of line-source diffraction can be

incorporated by reciprocity. The wedge configuration is illustrated

in Fig. i. The explicit form of the diffraction coefficient is in

[23] and will not be repeated here. The diffraction coefficient

consists of various factors including reflection coefficient factors,

Fresnel transition function factors, and a factor containing the

Mn(_,#',8 o) Maliuzhinets function, which consists of a nested double

integral in the complex plane. Griesser and Balanis present a

simplification of this function in [24] which allows easy calculation

of the diffraction coefficient for any size impedance wedge.

The items of interest in the analysis for coated conducting

surfaces are the Brewster angles, 8 o and 8 n. These are defined as:

Soft Polarization:

-i

8 o = sin (1/no) (2)

-i

8 n = sin (I/nn) (3)

Hard Polarization:

-i

8 o = sin (no) (4)

-I

8 n = sin (Wn) (5)

where

Do = surface impedance of face "o", normalized with respect

to the free-space impedance

nn = surface impedance of face "n", normalized with respect

to the free-space impedance

The surface impedance for a finite-thickness coating is discussed

in the following section. For a coated conductor, the "n" face is a

perfect conductor, which has a surface impedance of zero. This

presents problems in numerical calculations because the corresponding

Brewster angle for soft polarization is infinite and for hard

polarization is 0. A means of avoiding computational errors is to



represent the perfectly conducting surface with a small but non-zero

surface impedance. Comparisons between the fields diffracted by a

perfectly conducting half-plane, calculated using the perfectly

conducting UTD coefficients [2], and the fields diffracted by various

impedance half-planes with non-zero surface impedances, calculated

using the impedance-wedge diffraction coefficients [24), are shown in

Figs. 2 - 7. For bistatic scattering, using W = 0.00001 to

approximate a perfectly conducting surface is an adequate, but not

perfect, approximation for both polarizations (Fig. 2 and Fig. 5).

For monostatic scattering near-field incidence, the approximation

improves (Fig. 3 and Fig. 6). Finally, for monostatic plane-wave

scattering far-field observation, which is the type of scattering

considered for RCS prediction, the W = 0.00001 approximation produces

nearly identical results to the perfectly conducting geometry (Fig. 4

and Fig. 7). This approximation will, therefore, be used in the

remainder of this analysis.

B. EQUIVALENT SURFACE IMPEDANCE FOR A COATED CONDUCTOR

The shorted, transmission-line impedance is a standard

approximation for the equivalent impedance of a conductor with a

finite-thickness coating [31]. The equivalent impedance normalized to

the free-space impedance is:

_eq = j_ tan(kt sin(_t) ) (6)

where

= 4 _c/ ec

k= _4 _c

t = the coating thickness
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_c, ec = the relative permeability and relative

permittivity of the coating

_, e = the permeability and permittivity of the coating

@t = the angle of the transmitted ray with respect to the

surface of the coating

It is a standard practice to use

O

calculated at normal incidence, #t = 90 .

the equivalent impedance

This is valid provided that

either the incidence angle is near or at normal, or that the coating

has a high permittivity or a high conductivity, or that the coating is

very thin compared to a wavelength.

C. COATED DIHEDRAL CORNER REFLECTOR

The equivalent surface impedance for the coated dihedral corner

O

reflector (Fig. 8) was originally approximated by setting #t = 90

[25]. The results compare favorably with MM results for high

conductivity coatings and for angles near normal incidence. For less

conductive materials and for angles away from normal incidence to one

of the plates comprising the reflector the accuracy declines. Fig. 9

compares MM results with UTD results for one of the worst cases, the

O

90 corner reflector. In an initial attempt to correct the UTD model,

an angularly varying equivalent impedance was incorporated into the

first-order reflection terms only as these were thought to be the most

significant terms in error. The angularly varying equivalent

impedance was not included in the diffracted terms. A pattern

computed based on this model is shown in Fig. l0 along with the UTD

results from Fig. 9 using the original model. The two models give

nearly identical results. This indicates that the angular dependence

of the equivalent impedance in the reflected terms does not play a

16



Plate I

2C[-

A2

Plate 2

.b

@

0 @
Reflections: 2, 4 6, 8
Diffroctions: 1, 5, 5, 7

Fig. 8. Coated dihedral corner reflector geometry.
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major role; however, this may not be the case for the diffracted

terms.

An analysis of the various higher-order scattering terms reveals

that the most significant terms in the areas of disagreement are

first-order and second-order terms involving diffraction. This is

illustrated in Figs. i0 - 14 which contain a breakdown of the

individual terms. The nomenclature used is:

Hn - first-order diffraction or reflection from point "n"

Hnm - second-order diffraction-diffraction,

reflection-diffraction, diffraction-reflection, or

reflection-reflection from n to m

Incorporating the angularly varying surface impedance into diffraction

terms of the dihedral corner reflector model is a complicated task;

and it is postponed for the next period and until an evaluation of the

scattering from a coated plate is complete, where this variation will

be investigated.

D. COATED, RECTANGULAR PLATE

Because of its simplicity, the coated, rectangular plate of Fig.

15 is a convenient configuration for studying the effects of an

angularly varying equivalent surface impedance approximation for the

finite-thickness coating. At present, the model contains first-order

diffraction terms only. Comparisons between the UTD results obtained

with a constant equivalent surface impedance calculated at normal

incidence and UTD results obtained with an angularly varying impedance

are shown in Figs. 16 and 17. The Finite-Difference Time-Domain

(FD-TD) method is used for comparison in Fig. 16, and experimental

data is used in Fig. 17. Near normal incidence the two UTD methods

2O
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X

Fig. 15. Strip/plate geometry.
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produce similar results, but they deviate considerably from each other

away from normal incidence. For the soft polarization case of Fig.

16, both UTD models disagree with the FD-TD results away from normal

incidence, indicating a need to include higher-order terms.

Surface-wave terms, which are not included in this model, can be a

significant contribution, expecially near grazing incidence. The need

for surface-wave and higher-order terms is substantiated also by the

hard polarization results of Fig. 17. The angularly varying impedance

model produces improved results in the intermediary lobes. The

discontinuity near grazing incidence points to a need for surface-wave

and higher-order terms, which will be investigated in the future.

III. FUTURE WORK

The dearth of research in the area of scattering from coated

geometries makes this an obvious focus of future investigation.

Specifically, the angularly dependent equivalent surface impedance for

the coated dihedral corner reflector will be incorporated into the

present analysis. Additionally, surface-wave and higher-order terms

will be added to the coated strip/plate model to study their effects,

which should be significant near grazing incidence.

Another area of future research is the continuation of

investigation into the nonprincipal-plane scattering from perfectly

conducting, rectangular plates. Previous reports [30], [32], [33]

detail several different modeling schemes, including various

equivalent currents methods and corner diffraction coefficients.

26
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Results near and at normal incidence are accurate; however, near

grazing incidence, the need for more terms is obvious. Specifically,

third-order terms and more accurate corner diffraction terms seem

necessary. Recently, Hansen [34] formulated a promising corner

diffraction coefficient by comparing MM and Physical Theory of

Diffraction (PTD) results for the scattering from a plate. This

corner diffraction coefficient will be incorporated into our present

plate models and reported on in the future.

The ultimate goal of this research is to combine the work on

lossy surfaces and plate diffraction to obtain a comprehensive model

for scattering from coated plates. Bistatic scattering and

grazing-incidence scattering are important to consider in this model.

The accurate high-frequency modeling of the rectangular plate at all

angles of incidence and observation and the accurate characterization

of the effects of a finite-thickness coating are crucial to the

modeling of more complex targets.
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PART B

ANTENNA PATTERN CONTROL USING IMPEDANCE SURFACES

ABSTRACT

This is the semiannual progress report for the Antenna Pattern

Control Using Impedance Surfaces research grant. This report covers

the research period from February i, 1990 to July 31, 1990.

During this research period, we have developed the capacity to

measure the electromagnetic properties of lossy materials. We have

also investigated the effects of using multiple material coatings on

the radiation pattern of the horn antenna. Numerous computations have

been devoted toward the inverse problem of synthesizing desired

radiation patterns using the impedance surfaces. Stabilizing the

equivalent sheet impedance using the linear control condition has been

attempted, and it has been found to be a very difficult task. A

detailed review of the method has been performed. Corrective measures

and alternative methods have been studied, and they are under review

for implementation.
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A. Measurement

I. INTRODUCTION

of the Properties of the Lossy Materials

In this research period, we felt a great need ( because of the

lack of data from the manufacturers) for the measurement of the

electrical properties of the lossy materials which we introduced to

control the radiation pattern of the horn antenna. The accurate

values of the complex permittivity and permeability are needed both in

the realization of the horn antenna radiation pattern control and in

the analysis of the horn antennas with impedance walls. While time

consuming computations are queuing in the computer, a significant

portion of our time was devoted to developing the capability to

measure the electrical properties of lossy materials. Since the lossy

materials used in the antenna's radiation pattern control are of solid

type and have relatively high loss, the measurement of the complex

permittivity (e r) and complex permeability (_r) can be performed with

very good accuracy with the S-parameter method utilizing the HP8510

network analyzer[l], [2]. Figure 1 shows the configuration of the

X-band waveguide sample holder in the testing system.

Port 1 _=0 _=d Port 2

INJlv[

Figure i.

i_- d --_i

Sample

Configuration of the sample holder
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In the S-parameter method, the mismatches in the feeding source

and the load can be calibrated by the HP8510calibration process. The

effect of the higher order modes introduced by the insertion of the

lossy material sample can be reduced to a negligible level if the

sample is located far away (a few guided wavelengths) from the two

coaxial waveguide adapters. Thus, by solving the boundary conditions

at _=0 and _=d using the transmission line model, the relationship

between the S-parameters and the electrical properties of the sample

can be found.

Sll (_) = V{V: II£=0= ( 11 _- T2F2T2)F

S21 (_)

(i)

I

V_l_=d ( 1 - F2)T
- (2)

V:l_=O i - T2F 2

where

] _r - 1
F = e= (3)

T = exp(-j _-_ff d )
(4)

A = 1 (5)

2 2
lo lc

where l o = free space wavelength, I c = cutoff wavelength of the X-band

waveguide sample holder. From equation (1)-(4), the T and F can be

obtained by
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F = K -+ _ K 2 _ i (6)

where

T = SII(_) + $21 (_) - F (7)

1 - [SII(_) + S21(_)]F

2 2
[S11(_) - S21(_)] + 1

K
2Sll (w)

(8)

Using the measured SII(_) and $21(_), F, T, and A can be computed

by using (6), (8), and (4). Then, using (3) and (5), the electrical

properties of the lossy material in the X-band waveguide sample holder

can be calculated using

1 + F
#r = (9)

_r -_

1 1
l o(1-F) A 2 + ---2

kc

l]
A° A 2 + --2

l:

_r

(I0)

Since the measurement of S-parameters in HP8510 can be performed

to cover the entire X-band, the material properties in X-band are

obtained by the above formulas. This measurement system has been

automated.

B. Theoretical Development of the Synthesis Problem

A systematical effort has been devoted toward the inverse

problem. Special attentions have been paid to obtain a physically

realizable sheet impedance distribution so that the inverse problem

can be experimentally realized. However, this has been found to be a

formidable task, and we have not yet obtained a stable inverse
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solution of the impedance surface for a desired radiation pattern.

The analysis of the synthesis method leads us to believe that the

following reasons have contributed to the instabilities.

i. Non-Uniqueness of the Solution

Referring to Figure 2, the required aperture distribution M 2 of

the desired radiation pattern is to be realized by the control

surfaces which are located in different locations. Therefore, there

is no one-to-one correspondence between the control units and the

desired aperture distribution. There are infinite many combinations

of control surface impedances which could lead to the desired aperture

distribution. The linear control condition allows a linear solution

of the control equation. The numerical error in the solution of the

electric currents due to the finite size of the segments on the

control surface and the rapid changes of the desired aperture

distribution seem to encourage the instability of the solution based

on the linear control condition.

2. Solution of the Transition Equation

In the previous progress report, the horn antenna problem is

outlined by Figure 2. In region 1 of Figure 2, the full-wave

transition technique is developed to analytically compute the

transmitted and reflected waves when this portion of the walls is of

perfectly conducting surfaces. This technique is based on the same

boundary condition as [3]. However, instead of approximating the

continuous horn transition with a number of stepped rectangular

waveguides, we formulate a set of first-order differential equations

to analytically account for such a continuous transition.
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For a horn transition, the problem can be viewed as a cumulated

effect of the infinitely small stepped transitions of the rectangular

waveguides as illustrated in Figure 3, where _, _, _, and _ are the

full-wave expansion coefficients. Since the pyramidal horn has a

continuous transition, its full-wave expansion coefficients are also

continuous. Therefore, we can formulate a set of first-order

differential equations in terms of their _ parameters which can be

represented in the form of a matrix equation as follows:

dy(z)

dz
- T(z).y(z) (II)

whe re

y(z)= I]

and T(z) is the two-port system matrix of the transition.

solution of (II) takes the general form of

(lla)

The

S
y(z 2) = e • y(z I) (12)

where

S = (z)dz (13)

jz i

and

S S 2 S 3

e = I + S + --_.v + --_v + ...... (14)

In (14), I represents the unit matrix. Such a solution is a very

tempting one which is an analogy to the scalar differential equation.
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Unfortunately, the solution in (13) is valid for only a few cases, for

example when S(z) is diagonal or S(z) is independent of z[4], [5]. We

have just realized such a constraint. Since this solution affects the

computer program for both the analysis and the synthesis, alternative

methods for such a solution are under implementation.

II. ACCOMPLISHMENTS

A. Measurements of the Properties of the lossy materials

The S-parameter method with the HP8510 network analyzer has been

used in a series of measurements of the electrical properties of lossy

materials. To show the accuracy of such a measuring system, a nylon

sample was first used to perform the measurements. Figures 4 and 5

show, respectively, the real parts of the complex c r and _r of nylon

(imaginary parts are negligibly small, and they are omitted) at

X-band. As shown in the figures, our measured values are within the

second decimal point accuracy compared to the well-known values of

nylon (er=3.0 , _r=l). Next, we proceeded to measure material

properties of two surface-wave absorbing materials which are suited

for the radiation pattern control of the horn. The first is the

Eccosorb-GDS. Figures 6 and 7 show, respectively, the real and

imaginary parts of e r and _r for the material. These values differ

from those published in [6], however; our measurements have shown very

good repetition of the results. We believe that the batch difference

of the sample might be the reason for such a difference. The second

surface-wave absorbing material we measured was the SWAM (Surface Wave

Absorbing Material). Figures 8 to ii show, respectively, the measured

data for real and imaginary parts of c r and _r for two measurements.
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B. Theoretical Development of the Synthesis Problem

In the previous reports, we have demonstrated that the sheet

impedance material can be effectively used to control the radiation

pattern of the horn antenna. In this research period, the effect of

multiple sheets of impedance coatings on the top and the bottom walls

of the antenna has also been investigated. Figure 12 shows the

comparison of the E-plane radiation patterns for conducting walls, a

1.5 cm GDS plus a 3 cm SWAM coating, and a 7.45 cm GDS coatings on the

top and the bottom walls of the horn. The layout of the coating is

shown on the insert of Figure 12. At a frequency of I0.i GHz, the GDS

material has a measured relative permittivity of 14.83-j0.06, and a

relative permeability of approximately 1.47-ji.46. The SWAM material

has a measured relative permittivity of 16.55-j0.47, and a relative

permeability of approximately 1.50-ji.22 at the same frequency. These

experimental results show that the combination of GDS and SWAM coating

materials can achieve the same pattern control as that of 7.45cm GDS

coating (eliminating the first sidelobe) while the pattern suffers a

much smaller loss in its total gain(4.5dB for 7.45cm GDS and 2.1dB for

the combined coating of GDS and SWAM).

Efforts have also been devoted to examining the source of the

rapid ripples in the back lobes of the H-plane radiation pattern. To

investigate this ripple structure, the surface-wave absorbing material

SWAM has been used to coat on the outside surfaces of the horn

antenna. Figure 13 shows the comparison of the H-plane radiation

patterns. As expected, the coating of the surface wave absorbinq

material greatly reduces the magnitude of the rapid ripple pattern,

which confirms our assumption that the diffraction of the outer
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surface and the back structure of the horn antenna measuring device is

one of the sources of these ripples. Also, as expected, since a

portion of the diffracted energy is absorbed by the surface wave

absorbing material, a much lower radiation is observed in the back

region of the horn antenna.

III. FUTURE WORK

Experimentally, we have demonstrated the control of the impedance

surfaces on the radiation pattern of the horn antenna. Theoretically,

however, we have not yet realized a stable and practical surface

impedance distribution on the inner surfaces of the horn antenna for a

desired radiation pattern in the synthesis problem. In the next

research period, the following efforts will be devoted to this

research project.

a°

b.

Develop an alternate solution of the transition equation (ii)

using Runge-Kutta method [7] or other efficient numerical

methods.

Investigate the sidelobe level control to approach the desired

radiation pattern. As an example, Figure 14 shows a desired

E-plane radiation pattern, which is the -90 ° to 90 ° portion of

the H-plane pattern of the same horn antenna, and the synthesized

pattern with the sidelobes being individually controlled by using

modified Taylor's pattern synthesis[8], [9]. The sidelobe levels

are set at -31 dB for the first sidelobe, -40 dB for the second

sidelobe, and -42 dB for the third sidelobe. Figure 15 shows the

comparison of the required aperture magnetic current

distributions for the sidelobe level control and for the
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variational pattern control proposed by the previous report (an

equivalent null-free synthesis method by P. M. Woodward [I0] may

lead to a similar aperture distribution). It is demonstrated in

Figure 15 that if instead of synthesizing every detail of the

desired radiation pattern, we may be better off to control only

its sidelobe levels to approach the desired pattern. If this is

attempted, a much smoother aperture magnetic current distribution

will be needed for the synthesis problem. Therefore, if the fine

details of the radiation pattern outside the major lobes are not

our major objective, a smoother aperture distribution can help to

stabilize the solution of the control surface impedance.

Moreover, this type of aperture distribution is more practical to

be realized by using impedance surfaces on the walls of the horn

antenna. Similar distributions have been achieved by using

impedance walls of the parallel plate waveguide as demonstrated

by [ii]. Therefore, it is an option for us to work on.

From the realization point of view, since the sheet impedance

solution based on the linear control condition varies from point

to point, it is not a very practical way of realizing such a

distribution. We are looking at the solution to the inverse

problem in which the material parameters of the impedance coating

changing only on the direction of the horn transition; i.e., the

z-axis in Figure 3.

44



IV. PUBLICATIONS

During this reporting period, four papers have been submitted for

publication in IEEE Transaction on Antennas and Propagations. Two of

them have been accepted. One paper were presented in international

symposium. The work reported in all of these papers was supported by

this NASA grant. These are as follow:

a. Kefeng Liu and C. A. Balanis, "Simplified formulations for

two-dimensional TE-polarization field computations," accepted to

be published in IEEE Trans. on Antennas and Propagat..

b. F. L. Whetten, Kefeng Liu and C. A. Balanis, "An efficient

numerical integral in three-dimensional electromagnetic field

computations," in IEEE Trans. Antannas and Propagat. to be

published in September, 1990.

C. Kefeng Liu and C. A. Balanis, "Analysis of horn antennas with

impedance walls," in IEEE AP-S International Symposium Digest

(Dallas, TX) May 1990 pp. 1184-1187.

d. Kefeng Liu and C. A. Balanis, "Analysis of pyramidal horn

antennas with or without impedance walls," submitted for

publication in IEEE Trans. on Antennas and Propagat..

e. Kefeng Liu and C. A. Balanis, "Near-field interaction between

sinusoidal electric and magnetic dipoles," submitted for

publication in IEEE Trans. on Antennas and Propagat..
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